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By Antonio Ferri

SUMMARY

The method of characteristlics has been applied for the determination
of the supersonic—flow propertles around bodles of revolution at a emall
angle of attack. The system developed considers the effect of the vari-—
ation of entropy due to the curved shock and determines a flow that
exactly satisflies the boundary conditions in the limits of the simpli-
fications assumed. Two practlical methods for numerical calculations are
gliven. : .

INTRODUCTION

For the determinatlion of aerodynamlc properties of bodies of revo—
lution at supersonic speeds, two methods have been used: a method that
uses the small-disturbances theory and a method that uses the charac—
teristics theory. Both methods are successful in the determination of
the flow properties for bodies at zero angle of attack, but the precision
of the small-disturbances theory decreases when a body of revolution at
an angle of attack is considered.

For bodies of revolution having supersonic flow everywhere, the
theory of characteristics can also be used at an angle of attack.

The method of characteristics for the determination of the flow
field around bodies of revolution at an angle of attack was first used
by Ferreri (reference 1) in 1936. Ferrarl considers the flow as potential
flow and develops a method for the analysis of the flow fleld around a
body that in the epproximation of potential flow appears to be general
and can be applied to bodies of any shape and with any angle of attack.
In the determination of the flow properties along the first character—
istic surface from which the analysis starts, however, Ferrarl analyzes
the flow around a cone of revolution; and in this part of the analysis
only small values of angle of attack are considered.

Sauer in 1942 (reference 2) conselders the same problems and shows
that for small values of angle of attack, the analysis of the flow
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Tield around a body of revolutlon can be made by applying the charac—
terlstics method only 1n one meridian plane; and, therefore, Sauer uses
characteristic lines in place of the characteristic surfaces considered
by Ferrarl. Sauer, in the development of his system, is interested
essentially in the. analysis of the flow arowmd circular cones; and when
the method is applied to bodles of revolution of shapes different from
cones, the boundary conditlons are no longer satisfied. The flow obtained
from the solution used, also at small angles of attack, wets a body that
is not a body of revolution. The body can be obtained from the body of
revolution considered initially by curving ite axis of symmetry. Sauer
also assumes that the flow 1s potential flow. With this assumption, the
flow must be considered as potential flow for the case of the body at

zero angle of attack also; therefore, all the effects of entropy gradients
are neglected.

The flow field around clrcular cones at small angles of attack has
been analyzed in a more exact form by Stone. (See references 3 and L4.)
In his analysis, Stone considers the flow as rotational flow and, there-—
fore, tekes into account the effect of entropy gradients on the velocity
distribution. This effect exlists only when the cone has an angle of
attack and, at low Mach numbers, is small but of the same order as the
effect of other parameters that are considered in the analysis.

Here, the method of characteristics is extended to the analyels of
the flow field around & body of revolution at emall angles of attack for
the case of rotational flow. The effect of entropy gradients about bodles
of revolution even-at small angles of attack can be important because the
entropy gradients that exist in the stream for small angles of attack are
due to the variation of curvature of the shock exlsting at zero angle of
attack also, together with the fact that the shock surface does not have
exiel symmetry with respect to the direction of the undisturbed velocity.

The method presented permits the determination of a flow that in
the assumption of small angles of attack exactly satisfies the boundary
conditions and, therefore, wets the body of revolutlon considered. This
method is given in a form that permits its application to practical
problems and requires elther numerical or numerical and graphlcal calcu-—
lations of the same type as the calculations used for the analysis of the
flow around bodies at zero angle of attack. The method can be applied

to cases in which the entropy variations can be neglected or are zero.
In these cases the terms that contain the entropy variations become zero.

SYMBOLS
X,¥,90 cylindrical coordinates (fig. 1)
r,,0 polar coordinates (fig. 8)

v local velocity (function of x, y, 0)
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u,v,w

Vr,Vn,w

Vp

veloclty components in cylindrical coordinates (u along
x—axis, v along y-axlis, and w normal to meridian
plane) _

velocity components in polar coordinates (v along r,

vp Bnormal to r in meridian plane, and w normal to
meridian plane) :

limiting velocity corresponding to adiabatic expansion to
zZero pressure

pressure

denslty

ratlo of specific heats

speed of sound <%2 = 7%)

angle of attack of body

Mach angle (Sin B= %)

angle between velocity V and x—exis

angle between the axis of the cone tangent to the shock
and the axis of the body

angle at the apex of the cone tangent to the shock

tangents to the characteristic surfaces in the meridian
plane 0 = Constant

veloclty component normal to the shock surface

veloclty component along the generatrix of the cone
tangent to the shock

velocity component tangent to the cross section of the
cone tangent to the shock

angle between the tangent to the shock and the ‘axis of
the body

entrbpy variation for unit mass
normel to the streamline in the plane 6 = Constant

normal to the surface of the shock
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H,L,K,Z coefficients defined by equations (24)
A cosfficient defined by equation (41)
Q coefficient defined by equation (45)
D3,Do coefficients defined by equations (55)

Ay ,85,P,Po,T coefficients defined by eguations (60)

R radius of the hodograph diagram

Subscripts:

o © free—stream flow quantities

1 flow quantities for the condition of zero angle of
attack

2 flow quentltlies related to the effect of angle of

attack as defined .in equations (5), (6), and (8)

The prime (') represents quantities in front of the shock and the
double prime (") represents gquantities behind the shock.

EQUATION OF MOTION FOR FLOW ARCUND A BODY OF

REVOLUTION AT A SMALL ANGLE OF ATTACK

Consider a cylindrical coordinate system in which the x—axis is
coincident with the axis of the body of revolution, the y—exis 1s normal
to the x—axis in any meridiaen plane, and the position of every meridian
plane is defined by the angle 6 measured with respect to the meridian
plane that contains. the direction of the undisturbed velocity (fig. 1).

Fuler's equations of motion for steady flow in cylindrical coordi—
nates are:

1% _ou, , ou ou 1
o3 ox u + > v + — w (1a)
1w, v W
3 u + e v+ —r w . (1v)
_1 % _ov o ow ™
6700 ox u + Sy v+ 7 % w o+ S (1c)
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The continulty equation in cylindrical coordinates can be expressed
in the form

o(pu) , olpvy) , o(¥p) _
ox y oy v 0 (2)

whereas the law of conservatian of energy can be written in the form

l au ow
;Y-I QE ;Pe'ax> ( V““’g (3a)
_Lléz_.P_ée>=_ du ov ow
1\p 3y 2oy 'y Ty Ty (3b)
_z_.._ag__.La_p)__ v o
y-1\py 38 p2y 39 y89+vy69+wyae (3¢)

If the density is eliminated from equation (2) by means of
equations (1) and (3) and the quantity a is introduced defined by

the following equation can be obtailned:

2C-£)2(-9-7%0-D 2@ 2

_E’E<Q Bw =0 N
a2 \dx y o8 a2 yae 37 . (%)

In this analysis only small angles of attack will be considered,’
and, therefore, only the first—order effect of the angle of attack will
be determined; whereas the quantities of the same or higher order than
the square of the angle of attack will be neglected. In this approxi-—
mation the velocity components of the flow around the body can be
expressed in the following form (references 1 to L):

up + aup cos 8 (5a)

=1
I

v = 73 + avy cos 9§ (5p)
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W =awpo 8in 9 (56)

where wu, v, and w are functions of the three coordinates . x, y, and 9;
whereas Uy, Vi, Up, Vo, and wo are functions only of the coordinates x
and y of any meridian plane. The gquantity o 1s the angle of attack

of the body, the quantities with subscript 1 are the quantities

existing at the position (x,y) for the body considered at zero angle of
attack at the same Mach number, and the quantities with subscript 2 are
functions that take into account the effect of angle of attack.

It will be shown in the following considerations that the form
assumed in equations (5) for the velocity components permits the bowndary
condition8 to be satisfied in the simplifications assumed. From
equations (5), for small angles of attack,

P = P; + apo cos 8 (62)

p =py + ap, Co8 @ (6b)

whereas equation (4) becomes

du _y_%> g(._ﬁ ¥ _ (u @>g v _
- 1 22 + - 2 + - (S; + %) 82 + s 0 (7)

Equation (7) is similar in form to the corresponding equation for
the case of the body at zero angle of attack and differs only in the
term 51%5. In order to analyze the differences between thls expression

and the expreeslion for the axlal symmetrical case and in order to obtain
another relation that defines the quantity w, the relation between
rotation of the flow and entropy gradient wlll now be Ilntroduced.

For perfect flow the entropy variation at any point can be expressed

in the form
y—L
RAS po7
e =2 (2
Py \ P
For small angles of attack, therefore, by the use of equations (6),

=1 AS r—1 AS
1
e R = e R 1+ a2 cos 8 — ya P2 cos @
31 f1
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or
AS = AS] + a ASy cos (8a)
and
- R (P2 _7P2
& =3 (pl Pl (8p)

where AS; and ASp are functions only of x and jy.

Between rotation of flow and entropy the following relation existsg

- a2
cuerXV:-—gra.dS
7R

or for small angles of attack

ds a2 _ v S

a_x'y_R‘“"('&‘?a;) (92)

3 a2 _

pe-E-y (59)
98 82 _ fow_ v\, ,wr_ /Bu _ (56)
y 90 ¥ dy v o9 y vy 08 ox 9¢

If n 1s the normal, in the meridian plane 9 = Constant, to the local
tangent to the streamline, then

(10)




8 NACA TN No. 1809

whereas from equation (9c), when equations (5) and (8) are used, it
follows that

-2 NSy _ (o VR | T ,,(ﬁ ow,
-~ = a2
/R ¥ v8y+y>+y+ y+ax (11)
or
oW dwp _  VWp + Vvp + uup &2
vay+ubx ¥ WRAS2 (12)

Equation (7) can be written in the following forms

@é_ﬁ>+i<l_ﬁ>+x_aﬂi+y_§+i=o (13)
ax 22/ oy 2/ y a2 VRam T 08 3

Equation (13) together with equation (12) defines the law of motion of
the flow around the body at smell angles of attack. This equation will
be used as a basis for the calculation of the flow fleld by the method
of characteristics to be treated in a later section.

CONDITIONS AT THE SHOCK FRORT

Equations (5) and (6) represent a stream that wets a body of revo—
lution at a small angle of attack. In order to satisfy the boundary
conditions at the surface of the body, the functions up, vp, and wp
mst be properly selected. Equations (5) and (6) must, however, satisefy
the boundary conditons at the shock surface also in order to be a
solution of the problem. It is necessary, therefore, to show that a
shock surface can exist across which the undisturbed stream inclined
at a with respect to the axis of the body is transformed into a flow
represented by equations (5) and (6).

Tn order to show that the shock boundary conditions can be satls—
fied, the following procedure will be employed. A shock surface dlstorted
in a manner to be described is assumed. Then, the free—stream veloclity
ahead of the shock will be resolved into three components: vy normal to
the shock, v tangent to the shock in the plane 6 = Constant, and W
perpendicular to the plane 6 = Constant. Similarly, the flow behind
the shock will be resolved into three components. In addition, each
component of the flow behind the shock will be divided into two terms:
one term for zero angle of attack and one term for the difference due
to the angle of attack (for example, u = uj + aup cos #). Then,
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the conditione of equilibrium at the shock will be imposed, and it will
be shown that the terms up, vo, and wo at the shock are independent

of 0 vwhen the angle of attack is small as initially assumed; hence,

the distorted shock is consistent with the field of flow behind it. Such
a shock surface can be obtained by deforming the shock surface produced
by the body when the angle of attack o is zero in the following way
(fig. 2):

When a = 0, the shock surface is a surface of revolution in axis
with the body; therefore, if OP,0P' 1s the curve intersection of the
shock with the meridian plane 8 = 0, then for o = 0, the tangent AQ
at any point Q of the curve OP 1s the generatrix of a clrcular cone
having the vertex at & point A of the axis and tangent along the
circle QQ* +to the shock surface. The shock surface, therefore, can be
consldered as a surface envelope of circular cones having the axis
coincident with the axis of the body but having veriable cone angle and
variable position of the apex A along the axis AB .of the body. TFor
the case of a # O +the shock surface is not a surface of revolution but
can still be considered, for small angles of attack, as the envelope of
the same circular cones conslidered for the case o = 0. These cones
have the same apexes and the same cone angles as the cases for a =0
but do not have the axis of symmetry AB coincident with the axis of
the body AB although they are rotated in the plane 6 = O wlth respect
to the body axis. The angle 17 through which each axis of the cones
must rotate in the plane 06 = 0 with respect to the axis of the body,
15 not constant but varies for each cone considered. For example, the
cone AQQf +tangent to the shock surface for « = 0, when a # O, must
be rotated by an angle mn to the position Aqul'; the axis ABy
remains in the plane 6 = O.

The shock surface so generated is consistent with the flow repre—
sented by equations (5) and (6), and this can be shown in the following
way s

Consider a point P of the shock produced by the body at an angle
of attack, and consider the cone tangent to the shock at the point P
(fig. 3). Call o the semlangle of the cone with respect to its axis
of symmetry. The axls of this cone is inclined at an angle 17 with
respect to the axis of the body and lies in the plane 6 = O.

The uniform velocity V, ahead of the shock is decomposed in the
three components: vi' in the direction PB normel to the shock, vp'

in the direction AP along the generatrix of the cone, and w' in the
direction normal to the plane APB. These components are, at small angles
of attack,

vy = Vo 8in o — Vo{a — n)cos ¢ cos 9 (1ka)

e — ~———
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t

vpt =V, cos o + Vo{a — n)sin o cos @ (14p)

wt = N, (a — n)ein @ (14c)

Strictly, in equations (14) ¥ must be written in place of 8;
but, for small angles of attack in equations (14), the difference
between YV and @ can be neglected. Indeed,

¥ =5+ 0!

where & 1is of the order of a, and @' differs from 6 Dby a quantity
of the order of w.

The velocity components behind the shock are (fig. 3)

vy =using—-7vcos o+ 7 cos 9(v sin g + u cos a) (154)
" =u cos o + v 8in o + q cos (v cos ¢ — u sin o) (15b)
wW' =w+n(u—vcotog) sing (15¢)

vwhere u, v, and w are the velocity components behind the shock in
cylindrical coordinates in axis with the body at the point P considered.

The veloclty components u, v, and w at the polnt P can be
expressed in the form given by equations (5), in which the components uj
and vy are the quantities obtalned at the polnt P for the condition
of a =0 and are direct functions only of x and y. The point P,
however, is a point of the shock, and its coordinates x and y change
when the coordinate @ changes; therefore, the velocity components uy
and vy at P also change with 63. In order to separate the part of
the components u, v, and w dependent on 6 <from the part independent
of @, the velocity components wuj; and v; at P will now be expressed
as a function of the flow properties at a point P; mnear P, having a
constant value of x and y for every value of 0.

Now, it has been assumed that the angle of the cone o tangent to
the shock at the point P 18 equal to the angle of the cone tangent to
the shock for the condition of zero angle of attack at the point P;
(fig. 4). The point Py 18 obtained on the shock by rotating the
cone APQ tangent to the shock for the condition « = O through an
angle 7 around the axis AN normal to the plane 6 = O at the apex A
of the cone. Because for the condition of zero angle of attack the
velocity components wu; and vi are independent of the coordinate 6,
the velocity components u; end vy at P(xp,yp) (fig. L4) are equal
to the velocity components at Pg(xP,yP), in the plane APlC. Therefore,

if AN 1is the distance PoP;,

= 1
u.lP = ulPl + (B;—N>Pl AN (162)
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NG

vwhere (fig. 4)

X
Py

cos o

AN = cos 0

(16b)

(17)

Substituting equations (5), (16), and (17) in equations (15) results

in

v = (un; 8in 0 — vy co8 ¢
¥ = (1 1 )py
+ a cos 6(up 8in g — Vo cos U)Pl

+ 1 cos 8(uy cos ¢ + vy 8in o)p;

P10 o[ %L gin ovy
+mCOS Sﬁ_—ﬂ U—ﬁ'COSO’Pl

vp" = (ug cos ¢ + vy sin cr)Pl

+ @ cos (u, cos ¢ + v, sin o)P
e §

~ 7 cos 6(u; sin o — v cos U)Pl

X
PN ov

+ L cose——lcoso+——lsincrp
cos ¢ ON 3N 1

w' = a.w2Pi gin 0 + n(u; — v1 cot O')Pl sin @

(18a)

(18b)

(18¢)

et A R T e m My < T A A e = e
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For the conditlon of zero angle of attack at Py

le" uy 8in ¢ — vy cos o (19a)

le" =uj cos g+ 7y sin g (19b)

and for the condition of the equilibrium at the shock at zero angle of
attack

"

Vo €08 0 = Vp, (20=)
" Vo sin g = 2= (v,2 — vy "
Nl (o] g = y + 1 1 le (QOb)

At the point P <for the case of a small angle of attack,

1 - l
('V'N"V'N')P = L—7 ) (VZQ - vT"2>P (21a)
no_ t
Vo =V (21p)
W' o= wt (21c)
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If equations (19) are used, equations (18a) and (18b) can be
written in the form

CIE

(e, = oo o gy + 1200 )

Xp. 1) N ")
+ co]s- S cos GCVBI% Pl
(VT">P = (le")Pl + @ cos e(vTe">Pl — 1 cos e(le")Pl

Xp, 1 <aVT "
+ L cos 0 l>
cos ¢ ON Py

Therefore, from equations (14), (20), and (21),

o

xp.n Ovy "
—(a — )V, cos gfvg." +V sinc<cw L Ot S S
( DA (Nl)Pl o No vy sin ¢ ON P
__2(r-1)

y + 1 v02°°5 o 8in oo — 1) (22a)

i - n " xPlTl <8‘le~> 22b
(a'_n)vosnc—(vT2)le—n<vN1)Pl+sino oN /Py (22p)

or
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VNt v "

), e DY (-9 ()

VO Pl tan ¢o 7+l @ Q VO Pl

bc oy "
1 1, “P1 3 < N, >
in ¢ — = = P 2
8 o ( 3b)

T a a cos g Vo \ ON

<%Pl - _( _ g}_l_ (—ul + \‘% cot U>Pl g (23¢)

In equations (23) the coordinate 6 does not appear; therefore,
for the shock consldered, the furictions wup, vo, and wo are independent
of 0, and equations (5) represent a flow condition in agreement with the

conditions at the shock.

The ratio /¢ which appears in equations (23) is independent .
of a; therefore, for a given point Py, 7/¢ remains constant in all
the range of angle of attack in which the simplifications assumed are valid.
Indeed, up, Vo, and wo are also Independent of the angle of attack
(equetions (6)). The values of 1y, Vy, Wy, and n/a must therefore be

determined only for one value of the angle of attack.

METHOD OF CHARACTERISTICS FOR FLOW AROUND A BODY OF
REVOLUTION AT A SMALL ANGLE OF ATTACK

In this section the method of characteristics 1s applied to
equation (13) to establish equations which will permit the flow field
behind the shock to be calculated by a point-by—point process. If the
flow is anywhere supersonic, equations (12) and (13) permit the determi—
nation of the flow around a body of revolution at & small angle of
attack by using the method of characteristics. Equation (13) can be
written in the following forms

H%+L%+2K%+Z=O
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where
u2
, H=1-—
a2
v2
L =1 — —
al
K=
a2
Z=£_l_§§+ aw
V Ron  y o

15

- (24)

If @ 18 the angle between the velocity V and the x—axis

and B 1s the Mach angle,

tan @ = L+ ¥
u
sin B = ¢
or for small angles of attack
tanq;:z
u
and
8




16 NACA TN No. 1809

The tangent to the line intersection of a characteristic surface
with the meridian plane 6 = Constant 1is

Ag = tan(p + B) =

H A
H -

/2~
(25)
VK — HL

K X

2 = tan(p — B) +

M-

where Ay 18 the tangent to a line corresponding to the characteristic
surface of the first family and )3 1is the tangent to a line corres—
ponding to the characteristic surface of the second family. The

terms A, &and );, are solutions of the equations (reference 5)

' . EZ -2+ L =0 (26)

Because u, vV, V, and a can be considered to be given by an equation
of the type of equations (5), @ and B can also be written in the
form

Q@ =@ + app cos @

B =By + app cos @

The characteristic surfaces are not, therefore, surfaces of revolution
but can be obtained, as was true for the case of the shock, as an enve—
lope of circular cones with their apexes at the axls of the body and
their axis of symmetry in the plane 8 = 0 and inclined with th axis of
the body.

The determination of the u &and v components of the velocity in
any point of the flow can be obtained by equation (13) by performing a
transformation in order to obtain a law of variation along the character—
istic lines (reference 5). Indeed, for every point of any meridian
plene (for example, of the meridian plane & =0, or 8 = Xy two charac—
teristic lines can be obtained as the intersectio® of two characteristic
surfaces with the meridian plane. Along these lines the variation of
the u &and v velocity components is determined by the equations of
characteristics that can be derived from equation (13). Assume that in
two points P; and Pp (fig. 5) of the meridian plane 6 = Constant
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(for example, 8 = 0, or @ = ZX) the velocity components are known.
From equations (25) the tangents to the characteristic surfaces in this
meridian plane can be drawn and the velocity components uw and v at
the point P,, Intersection of the two tangents, can be obtained in the
flrst approximation.

The equatlions of characteristics can be obtained by analyzing
equation (13) along the characteristic lines given by equation (25) in
the following way: If du and dv are the variations along the
characterlstic lines,

g

= % + (la,l‘b) %

or (see equation (10))

du _ du v a® 3
o a t Bet) - (ak) S g
dv _ ov ov
w Tt Cel) (27a)

’

then

du
dx

_du,, &v_,293 _, & 8 '
ax+)‘dx A oy "ﬂwan (27p)

If equations (27a) and (27b) are substituted in equation (13), and using
equation (26), along the characteristic line of the first family defined
by

%% = Ay = tan(p + @) ' (28a)

there results

2 -
du . dv_ a2 ds K—xa)+(§+ a‘v'>%[=o (28b)
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and along the characteristic line of the second family defined by

%=lb=tm(@-ﬁ)

there results

Equations (28b) and (284) contain the term
attack

(28¢c)

aw>1
7o8/8°0 (284d)

, but at small angles of

v _ 2% o5 9 = ¥ cot @

yoea y 3

oW _
y 09

and, therefore,

of the entropy_ is also known at the points P;
can be determined (reference 5)

the value of

is known at the points P;

ASp, — ASp,

;md. P>. The value

and Pp and, therefore,

El&

sin B

(G Pl)[cosw v o) |p, T (B3

)

(29)
sin B

cos(p — B) JPQ

From equations (28) and (29) the velues of u and v can be determined

in the first approximatlion for the polint P3

In order to determine the

value of w at P3 , the following procedure can be used;

If s 18 the projection of the streamline in the meridian plane

considered (fig. 5) and P3 is a point near Pq

and P2,

a
—:——sg=%wfsinqp+%wfcoscp
_ %y, Swu
oy V. ox V
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or from equation (12)

Ovp _ TWp + vvp + ump  Sin?pV ASp '
3 3V R (30)

Now (fig. 5)

= iﬂg — cos
oy = Yep, 7 <ds)Pl (%25 _xPl) cos(B + ) lpl (312)

- 3’2 _ cos B
Yop w2P2 * <dﬂ)92 (IP3 Ipa) [cos(q) - B) :La (31p)
and
(;‘?) . " (32)
E _ sin B _ gin B
(IP3 IP]_) [ cos(p + B) Ll + <XP3 xP2> [ cos(e — B) La
Therefore,

_ 6w2> sin B
Yp. T Yo T\ g (xl’3 - xPl)[cos(q: ¥ B)Ll (33)

The values of u, v, w, and AS are known at the points Py
and Pp; therefore, the values of up, Vo, Wp, and ASy at the same

points can be calculated from equations (5) and (8). Indeed, wuy, Vi,
and AB; at those points are known from the determination of the flow

for a = 03 therefore, from equations (30) to (33) the value of wo
at P3 can be determined.

After the velocity components u, v, and w at P, have been
determined in the first approximation, a second approximation can be
determined by assuming the average values between the corresponding
values at the polnts Po and P3 or P, and P3 for all the coeffi-

clents. After the veloclity components at a polnt P3 have been
obtalned, the veloclity companents at any other polnt having the same x

S e e e e e e ey e~ o e P o e e
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and y coordinates as Pz bdbut a different coordinate @ can be
calculated from equations™ (5).

For practical calculations, equations (28) can be transformed in
the following form:

Ay = tan(B + o) (34a)

.@I._d.cpta.ns—(sinc9+ ow )tanﬂ—sinaﬂd—s- sln B 4y =0
v y ¥V 39/ - yR dn | cos(p + B) (34D)

Ap = tan(p — B) (3k4c)

d—V+dq>tanB—<Bin92+ ow )tans+sin2f’is- sin P __ax=o0
7R dn| cos(p — B) (314)
3kd

and
@ =@ + AP cos @ (35)
where
¢2=%008¢1~%8m¢1 (36)
and
V =7Vy + aVp cos @ (37)
where
Vo = up cos @ + ’ve sin @ (38)

At the surface of the body the calculations are similar to the case
of zero angle of attack because the entropy at the surface of the body
is ¥nown in every meridian plane and the value of 8 is given.
Equation (3lke) gives the variation of wp along the body; therefore,
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the value of wp can be obtained directly from another point on the
body in the same meridian plane.

At the surface of the shock the system of calculations is similar
to the system for zero angle of attack. In figure 6 the point P3 1is
at the Intersection of the tangents to the first characteristic surface

. at P; and to the shock at Po in the meridian plane 6 = Constant.
The equations of the shock and equation (34b) must be verified at P3,
which 18 assumed as a polnt of the shock in the first approximation.

In the plane 6 =0, Ww 18 zero and the values of V, AS, and @
behind the shock are functions only of the value of Q; and for any
value of , the values of V, AS, and @ can be obtained from the
equations of the shock

cos(@ —a) _ ¥V _ __LV/V' (39a)
cos(Q —@) TV, Vo/V, ) ‘
2
1 =z =1 Mo - 1f{tan(Q — a) (39p)
tan(cp - a) 2 Mozsine(ﬂ -a) -1

= 1 in -
25 T 108 7(7 " l) [Mo 8inc(Q — «)

4
=1 1 y —1{7
: 27]&10251@(9-0&)*’ 2] (39¢)
and.
a
=1+ 2L (398)
Vo 7-1M,

If the plane @ = 5 1s considered, the sign of a in equations (39)

mist be reversed.

From equations (39) the values of V and AS can be determined
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as a function of ¢; then &V ana -dd—gs— as a function of ¢ can be

evaluated. Now, 1if PP is the direction of the velocity at Py, the
veloclty at P3 will have the direction

@p, = Op) + M

Therefore, the velocity at P3 must correspond to a deviatlon across
the shock of CPP3 — o &and can be expressed as

= av
VP3 - vq)Pl ¥ dcp)q)P o
1

where TV
Pp

1
direction cpP e In a similar way,
1

is the velocity behind the shock corresponding to the

1 [V
____]_+———<— Np — tan Bp. AP
vPl vPl aCP)q)Pl 1

_ (sin9+w2cr,cos 9> sin B tan B
y v COE(B + CP) P

1n2
+ ASCPP - +<d-_AS) i) ﬂ =0 (40)
1 1 dop cpPl 7R
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In equation (40), Ap is the only unknown and, therefore, can be
determined. From the value of ¢ the value of g P3 and the value

of VP3 can be determined; and a second approximation for the position

of P3 and its value of the velocity can be calculated if the corre—

sponding average values betwsen P2 and P, are assumed for ¢, B, and
all the coefficients of equation (20)

The value of w at P can be obtained from equation(23c) in
which n 18 given by figure 6 as

whéere n =0 —0¢ for 6 =0 and n =0 -0 for 6=%. The value

of o corresponding to the point P4 on the shock for a =0 18
given by the relation -

th Jp
sin ¢ 8in O

and yPlL = f UPlL) is the curve that represents the shock for a = O.

PRACTICAL APPLICATION OF THE CHARACTERISTIC SYSTEM

Graphical Numerical Method

The analytical part of the characteristic system used for-
determining the flow field about & body of revolution at an angle of
attack is similar to the system used for a body of revolution at zero
angle of attack (reference 5), but the practical numerical application
18 slightly more involved. In equation (3ke) the values of Vo

and. ASQ must be known in order to determine the value of wo and must

be determined from equations (37), (36), and (8), where the values of Vi
and AS; are considered known in the entire flow field and gliven by the

determination from the case of zero angle of attack. In the practical
case, however, the values of Vj, @1, and AS; have been obtained with

gy A T e e I
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the characteristic system only In a finite number of points at the inter—
sections of the characteristic net; and the characteristic met for the
case of zero angle of attack is different from the net used for the case
of a body with a small angle of attack. In order, therefore, to obtain
the values of Vy and AS; at the intersections of the characteristic

lines for the case with a given angle of attack, a complicated Inter—
polation of the values V7 and AS; would be necessary 1f the two

characteristic nets for zero angle of attack and for a given angle of
attack were canstructed independently.

In order to reduce the numerical work to a minimmm, the two following
methods .can be used, the first of which 1s practical when a graphical
numerical calculation is performed, whereas the second can be more
convenient when automatic computing machines are used.

In both cases the calculatlions start with the determination of the
flow at an angle of attack around a cone when the body conseldered 18 a
pointed—-nose body of revolution or with the determination of the shock
at the 1ip of the body if the body 1s an open-nose body of revolution.
(The tangent to the shock at the 1lip can be determined with the two—
dimensional theory.) The flow around a cone at an angle of attack has
been determined and tabulated in reference 3; whereas the flow for zero
- angle of attack has been tabulated in reference 6. A different method
for determining the flow around a clrcular cone at an angle of attack 1s
given in the appendix. It can be assumed, therefore, that the flow
along the Pirst characteristic line of the first famlly at the end of
the conical region in the plane @ = Constant (for example, 0 = 1)
is known (fig. T). , 2

Tor the practical numerical calculations a value of the angle of
attack must be selected. In order to obtalin higher precision, 1t is
convenient to select a relatively high value of the angle of attack
because in this way the differences between V and Vy and AS and AS;
are large and, therefore, can be determined with sufficient precislon.

Usually, when the determination of the flow field for the case of
zero angle of attack is made with a graphical numerical process, in
order to avoid numerical errors of computations, the value of the
intensity and direction of the velocity are plotted as a function of the
position along the characteristic lines for both families of character—
istic lines. The velocity distribution and the entropy—variation distri-
bution along the characteristic lines and along the surface of the body
for the case of zero angle of attack can therefore be considered known.
If the distribution is not given, the values of V; and AS) must be

determined as a function of x along each characteristic line of a given
family (for example, of the second family) along the body.

Then the construction of the characteristic net for the selected
angle of attack must start by drawing the first characteristic
line P0P2P5 over the design of the characteristic net for zero angle

of attack (fig. T).
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From equatlon (3k4c), (34d),and (3ke) the flow at P can be
determined. From P; and Po the pqint P3 can be obtained in the
Tirst approximation as the intersection of the tangents at P, and Py
to the characteristic lines. By using equations (34b), (34d), and (29),
V, ¢, and AS can be obtained in P3 as for the case of zero angle of
attack (reference 5). From the variations %_.E: %, and %—xAé along the

line PlP3 the values of V, ¢, and AS at the point P), can be
obtained, where Py 18 obtained from the intersectlion of the character—
istic line P1P3 with a characteristic line of the second family in.
the net for zero angle of attack. At the point P), V> &34, and @,

are known; and, therefore, @o, Vo, ASo, and wo can be obtained. From
the values obtained from the first approximation a second approximation
can be obtained. From Py and Ps the point Pg can be determined

in a similar way, and the flow at P7 can be calculated. ZProceeding in

e simllar way, all the flow fleld can be analyzed.

Numerical Method

The equetion of motion (13) can be transformed by means of
équations (6) and (8) in a system of equations that permits a numerical
determination of the quantities Vo, @po, and ASp,. This system is.
numerically more Iinvolved; however, the characteristic net determined
for zero angle of attack is used. For a small angle of attack,

1
a2 ;2

Le = = l:]_ s 2=21 (wqup + vyvo)a cos 9]
& 1

where

u + VVo) = ViVo = == A i
a2 (v 1*2 a2 1’2 sin2g V1 (41)

Therefore

!'-=-l—2—(l+Aa,cose)
a2 a8
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Substituting equations (5) in equations (7) results in the following
expression 1f higher-order terms are neglected:

Swp fy _mB\, % f; mP)_wmwfom  on + A
ox a2 oy 812/ a2 \ 3y ox y

. 2 2
=-a.cose"_2+"_2_a;l<2u2ul+ulﬁ+5u2<1_u1>
X

y ¥ a1° dx a2

2 2
ovy <2v2vl + v°A . dvp 1 vy
oy 5-_12 oy aq

_mTA b wy ¢ i Ay 8v1>_3,1j;_ a_ue_+ﬁ> (12)
a2 oy ox 8-12 dy  ox

Because the left—hand side of equation (42) must be zero for the
conditions at zero angle of attack,

E(l-.‘&ﬁ).[.ia.<l_ﬁ>+l2_+w_2_ulvl<au2+ave + Q=0

(43)
where
Q= _l<au12 + av12>2u2 + A 1 /mE | wP)2v + A
2\ ox ox a12 2\ oy oy / a12

2
8

[N

Ty
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or, from equations (10) and (36),

BV'l 2u, + uA . BV'l 2v, + V4 _ NS BSl
2 13 2
a.l Y al

Q=-V (45)

The value of all the coefficients at the points P; and Po in

equation (43) can be considered known because %'E- and —a-a—vl can be

C Yy
consldered known from the calculations for the case of zero angle of
attack. Therefore, equation (43) can be considered &n equatlion in which
the characteristic lines are equal to the characteristic lines for zero
gle of attack because the coefficlents of the partial derivatives

ov.
2emd.——‘?--

are the same in both cases. Thus,

ax, ay’ Bx’ ay
() =210 = tanlor + B) (46a)
(&) =gy = tanloy - 81) (460)

-

Equetion (43) can be transformed by introducing the entropy
gradient g, and the equation of motion along each characteristic line

can be obtained. From eguations (8a) and (10) by means of equations (5)
and (37), the following relation cen be obtaineds

x_.%,%
- an+an a cos 6
as as
=_<__l+_2mcqse>vl+v2a,cosev
dx ox V, + Voo cos 8

35, 95 > u; + upa cos @
+{—+ —acos 9
oy oy . . V1 + Vo cos 9

. e e -
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or, Tor small angles of attack,

dS _aS1 |, oS os
$=E+$lacos ] +—-a:l (vaVy — 71 Vo)
ds
+ 3; (upVy — ulvz):lws_ﬂ (47)
y v,2

From equations (36) and (38)

up = Vo tos ¢ — @2Vy sin @ (48a)
Vo = V2 sin P71 + CPng cos @ ()-I-B'b)
and
vy =7Vy sin @
u; =V cos @p
Therefore,
os oS u S, v
1 1 —1 1,171
- == (VoVq — 7Vs) + — Vi — u7Vo) = — @V =
sz (V2T1 — vi¥2) + 5= (V) — Vo) =~ y? =nty N
Because the term in parentheses on the right-hand side of this
equation represents the variation of entropy along the streamline,
which is zero, equation (47) becomes
3s
= = _l 233_2 cos @ (49)
dn  dny dny
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Then, from equations (10), (41),and (49)

e % A 332 Y 0
ox dy 7RVi 7RVi an

The equations of motion along the characteristic lines defined by
equations (46) can be obtained by means of transformations similar to
those of equations (27) and are

dug + A-la d.V2 + D2 dix =0 (53)
My = GE = ten(ey = By) (54)
where
2
W, V. 8

e 1 e o . e e e e A = e e
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2
W, v,
D2= ._2.+_2+Q _2_:‘1_
y J a1y
v oS V. —1\os
+ ulla_'_llb_lsinQB 2 _2[7 4 72 —L (55b)

In equations (51) and (53) the coefficients D; and D, contain the

derivatives %il and B_Vl that mist be obtained from the analysis of the

case with zero angle of attack. Now, for every polnt P +he varlation
of V; along the characteristic line of the first family for the case

of zero angle of attack is

avy oV, v,

—1 = —L 4 A, —= 6
(dl)lla ax + la ay (5 &)

whereas along the characteristlic line of the second fa.mily

(ﬂ) 9, My VL
dx .)'lb ox oy (56b)

At every point P given by the intersection of two characterilstic
dvy
lines A’la and Mb in the characteristic net, the values (-E)

. Ma
v
and (—dxl> are known, having been obtained from the evaluation of
A

the following equations (reference 5)2

% = Mg = tan(e + By) (57a)
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ik_(?gi) _ tan Bl (ﬁm%) _ sin Py sin Bl tan Bl E
A dx cos(Ql + Bl) y

dSl 1 sin351 ’
- =0 - 5Tb
dny 7R cos(@l + B1) ( )

%ﬁ = Ayp = tan(py — B1) (57c)

i(ﬂ) + tan p (m)_.l_ sin 1 sin By ten By
Vi\ax/y 1\ax/ 7 cos(p; — By)

_8 1 eindp

dny 7R cos(py — By) (574)

Therefore, the values

BVl - M (d.vl> _ Ala (d:vl) . (58a)
OX  Mp —Xig \AX/y, o Aip — Mg \AX/
and
w3 |, dvl) _ (dll_)

can be calculated directly for evefy point of intersection of the charac—
teristic line (equations (57a) and (57c)h

After substituting the expressions of equations (48) and (58) in
equations (51) and (53) after some simplifications and trigonomstric
transformations, the following equations can be obtained:

Ma = % = tan(p; + By) (59a)

e e e e e e e - —— B e SR U
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dVg A!El A’l VQ Wo
Ti——dcpztanﬁl+ )R dx—? \—Tzsincpl+qnecosq>l+vj—- dx

+ Tdx =0 (59b)
sin By cos®B; cos(B; + @)

Mp = L = ten(ey — By) (59¢)

dg 'w.
2 V
+dq>2ta.nﬂl—£7£2-dx—£2— —isinq)l+q>2 cosq)l+—12-)dx

Vi

T dx

+ =0 (594)
sin B, cos2Bl cos(p; — By)
where
_ tan B3 sin B3
A cos(@; + By) (602)
_ tan By sin By 6ob
2 cos(@; — By) (6v)
B il
oS, Vo y -1 38,
Py = —=cos By Bin B, ~|=(1 + cos B, Bin B, — @y — 60
1%, 1 1Ty, sin2B1> 1 1 2 30, (60¢c)
2 Vol 22 (= 6
P, = —=cos B, sin B, —|—=(1 + cos B, sin B, + (604)
2 30, 1 17y, 51028, 1 1+ % 30,
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av 1 \/ -1
T = _l) L cos Y21 + 2=1 \ain
<d.x )VlaVl o(Bl+qal),:vl<+25 %8 sin By + @p cos By

av, cos(py — B1) [V, y -1

as
The coefficients Ay and A, and the value of —= have been
determined for the flow at zero angle of attack and

52 —_
dS, _ P, i

_ gin By - _ sin By
(xp3 XP2> [cos(¢l - Bl) LQ + <1P3 xpl>[ coB(Cﬂl + By)
1

1

S, _
_ 31511 °p 82P1

18 -5
1p, ~ Plpy

(61)

The practical use of equations (59) is identical to the use of the
corresponding equations (57) for the case of zero angle of attack.
(See reference L4.)

CONCLUDING REMARKS

The method of characterlstics has been applied to bodles of
revoluticn at a small angle of attack. Only the first-order effects of
the angle of attack have been considered. The system developed takes
into account the effects of the entropy variations on the flow phenomena
and determines a flow that exactly satisfles the boundary conditions
within the limits of the simplifications assumed.

The application of the method to practical problems has been
discussed and two systems are glven. The first method is numerical and
analytical and requires less numerical computation but requires the
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construction of another characteristic net, whereas the second method is
only numerical and uses the characteristic net end some of the numerical
computations made for the calculations for zero angle of attack.

Langley Aerconautlical Leaboratory
Naticnal Advisory Committee for Aeronautics
Iangley Air Force Base, Va., November 22, 1948
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APPENDIX

DETERMINATION OF FLOW PROPERTIES AROUND A CIRCULAR CONE

AT A SMALL ANGLE OF ATTACK °: -

Assume a polar coordinate system r,},9, Call v, the velocity
in radial direction, v, the velocity in normal direction to r in
the meridian plane O = Constant, and W the component normal to the
meridian plane (fig. 8); that is,

dr
Yr = i€
Vo rdi'
. rdg sin ¥
v 3%
If the phenomenon is conical,
e o
or
a _
or \
- ,
& = °
and
op
> - 0
op
SP o
or

Therefore, Buler's equations are

Tn OVp oy vy, Vn24: W

T S tremvee - - ° (62a)
vodvy . w  dvp , 1 dp vpvy —wloot ¥ _
7 ov Tremv oo orov’ . 0 (62p)




36 NACA TN No. 1809

T 8‘w+ W ow 1 dp VyW + VW cot ¥

n s =
r oV rsin1y89+rpsin¢89+ T ° (62¢)

The continulty equation is

ov:
2pvr.sinxlr+vnsin'¢’ég+psinllf—i1-+vnp cosllf+-w-a—9+a—w=o

oy v W 00 (63)
and the energy equation is
7 (Lt _2 =_( o. 9% ﬁ) 61
7—1<pae p289> T3 ™3 "% (.a)
7 (L _2 % =_< v,y o éz)
7—-l<p81lr pZBﬂI) v. aW+vna\,rr+waw (64D)

Combining equations (62) to (6k) results in

v2+w2 W2 ov, Tpe ow / we
wl B e B 52 (- B il B)

2wvn _ Ovn ;"Vn/ evn oW _ w cot ﬂf) =0 (65)

" a2 sinV o9 * ae \sin\lf d8 oV

For small angles of attack the velocity components can be expressed
in the form (references 1 and 3)

v. =7V + v cos 0
r ,'t'l 1‘2
Vg = vnl + “'Vne cos 9 r (66)

w=awp 8in 9 J
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when the second and higher order terms of the angle of attack have been

neglected. Equation (65) at small angles of attack becomes

2 ov. v 2) ow
o 4 Yo t —nf(;_n =
vr< +32>+vnco 11'+aw< 3 +sin1]r > o]

At small angles of attack,

o}
|

=P + app cos 6

©
]

pp + appo cos 9

The shock 1s a circular conical shock having i1ts axis inclined at an

(67)

angle m with the axls of the cone. The quantities with siubscript 1
ere the quantities corresponding to the case of zero angle of attack.
(Indeed, the cone is a particular body of revolution; and, therefors,
the conslderations made for the case of bodies of revolution are still

valid.)

From equatlons (62a), (62b), and (64D), there results at small

engles of attack

=0

g [

9 _2
¥ p

<K

In the meridian plane @ = Constant, therefore, the transformation

If o ASs cos 9
is the variation of entropy in a direction normel to the meridian

behind the shock is isentropic for small angles of attack.

plane 6 = Constant,

oS

—_— = aASH» co8 8
r sin ¥ 09

Because the shock at small angles of attack has circuler cross section,

- P
7 =1 psy = (22 — 52\ = constant
R i) Py
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and from equations. (62c) and (6h4a)

oW
- =85 =7, 7;5'81n ¥+ vy (vp sin ¥ + vy cos ¥) + Vr¥ry * Tnn,

(68)
If the variation of entropy is small and the term AS, can be neglected,
equation (68) becomes

Equation (67) can be written in the following form:

ov. v,2 awp co8 @
<-v-r+_n.)< _—%):—-vr—vncot'd{-—w (70)

By use of equation (67) and by considering the conditions for zero angle
of attack, equation (70) becomes:

ov. v. 2
- !
I'2 a a.12
2 .
. Yoy v —1 3 Ve + Yoy cot ¥
vhz cot ¥ + + A Tnl 5
ay a3 L Vi,
a.12
r, + V. cot ¥
_ vy — 1 1 o\ __w2
vfe 1+ ol vnl2 — Vr¥n1 |~ Bin (71)
1
i-—
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Equations (68), (70), and (71) permit the determination of the flow
around the cone at an angle of attack by means of a step-by—step calcu—
lation when the calculation for o = O has been performed. Consider
the hodograph plane wuv, and consider the variation of velocity
components v, and Vv, in a meridian plane 9 = Constant (fig. 9).

Assume that for a glven value of ¥, and 8, the velocity
components V., Vp,-and w are known. Polnt Pz of the hodograph

dlagram represents the velocity vector OP, corresponding to the velocity

at every point of the space of coordinate ¥, 1in the plane 6, = Constant;
vhereas 0Qm represents the values of (vn)Pa and QuP, represents the

velues of (Vr) Py

diagram is along the line QzP, &and has a value given by (reference 1)

R =<v +a_vn>
a r awP

a

Now, the radius of curvature Ry of the hodograph

and, therefore, can be determined from equation (70). At P, the values
of vrl and vnl are known from the calculation for a = 0

therefore, owrz and ov can be determined from equations (66).
Equation (T71l) can be used in place of equation (70) in the following way:
The vectors 0Q, and Q,F, represent the values of vn2 and vr2
at Pa; the vector OPa in the hodograph dlagram glives the values
of V2 ; and,therefors,

can be obtained from equation (T1).

Now et any point P, the radius Ry, glven from equation (70), or
the radius Ro , glven from equation (71), is kmown; therefore, from the
a

quantities at P, the quantities at P of coordinate ¥ = V¥, + AV
cen be obtained by constructing a circle of center Cg ngwhere C.P, = R
or Rga) through the point P, until the point P, along the line C,

a
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which is a straight line from C,, is Inclined by 'q,ra + AY with the
u—axis., Therefore,

(Vn)¢+A¢ = (vn).q, cos Ay + (R — Vr)q, sin An
(’Vr).(.ﬁ_ AY = ('\7'n)_q'r sin Ay - (R _vr)llr cod Ay + R'qf

Inasmch as the values of v, and v, at P, have been obtained,

the values of vi‘e and v, ~can be determined by differences from the
values for o = 0 with the use of equations (66). (I:E' equation (71) is
used, the values of vy, an%w T, are obtained d.irectly.) With

equation (68) the value of a—f can be calculated at P,, and the value
of wp at P, can be obtained. Indeed, ASp, 18 constant and has been

determined from the conditions at the shock. In a simllar way, all the
hodograph diagram can be constructed. If necessary, for every polnt Py

a second approximation can be determined.

The calculation of all the flow fleld must start at the shock. For
the calculations it is convenient to choose a coordinate system having
the axis of the conical shock as the axis of polar coordinates. In this
case, the velocity components v,., v,, and W behind the shock can still

be expressed in the form of equation (66). Indeed, from equations (15)
and (19),

| avn]
V. = |V 4+ a cos 8\w + =
g il Do " o Y
=V + v cos @ 2a
01, N2, (722)
. =] + a coB 9w + a v
Tg r To " a b
= vrl + a:vr2 cos 9 . (T2p)
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L3
I

8 a 8in o Wp — 1 ul a
sintv o« 1 b

o sin @ _ (T2¢)

where .

g’ vrs, and Wy are the components referred to the axis of the

conlical shock, whereas the components vrb, vnb, and wy are referred

to the axis of the body. Indeed, n/a is constant.

The calculations start at the shock. After determining the flow
field for zero angle of attack, the angle of the conical shock V5 is

known and the velocity components Vny and Try with respect to the axis

of the shock for every value of V¥ are also known. In order to determine
the flow for the case of a small angle of attack, the direction of the
undisturbed velocity must be rotated at a small angle a — q with respect
to the axis of the shock (fig. 10). The value assumed for o — n Tfixes
the value of o for which the calculations are performed. (This value

of a 18 not yet known but is obtained as a result of the calculation.)

For the value of a — 1 chosen, the components v, ~and wg behind

- 8
the shock can be determined from equation (1kb) (vr = vT') and
8
equation (1lkc) (W' = wg); whereas Vp, can be determined from equa—

tion (2la) (vns ='“VN") and vyg' 1is given by equation (lka). The

value of entropy o AS, cos § can also be determined from the equation
of the shock, for example, from the difference between AS and 0Sh.

When v, , vns, W?S, and ASp, are known behind the shock, all the flow
8

field can be obtained by means of equations (68) and (70) or (71). The
hodograph diagram can be constructed, for example, in the plane 9 = %.

The axis u has been chosen in the direction of the undisturbed
veloclty for zero angle of attack that corresponds to the axis of the
shock for a = 0. PFor a +the undisturbed velocity has been rotated
at a — 1y wlith respect to the u—aexis (fig. 10); therefore, the axis of
the shock has not been changed. The velocity OP, behind the shock of
figure 9 must be decomposed (1) in a component P,Q, inclined at *s

corresponding to Vrg if equation (70) is used or to Vo if
8

equation (71) is used and (2) in a component 0gQg éorresponding to W
8

or V,.
Do

8
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In this way, the values of vrl and vnl that must be used in

equations (68), (70), and (T1) are the values obtained from the calcu—
lations for zero angle of attack at the same value of V¥

(that 48, ¥ = ¥, for P,). Because the calculations start at the
shock, the construction of the hodograph diagram must be performed in
the direction of decreasing values of Y. At the surface of the body
for 9 = %, the component v, must be zero; therefore, when the radius

of the hodograph diagram passes at the origin of coordinates u and v,
the corresponding velue of V¥ 1s equal to ¥, + n where Vo, 18 the
angle of the cong (fig. 10). Because ¥, 18 known, the value of 1q
and, therefore, of « can be determined.

The components vV, and v, 1in the plane 6 =0 or 6 =g do not

change when, for the axis of reference, the axis of the body is assumed;
but the corresponding value of i 18 increased at q (fig. 10). The
value of wp changes; the value of Wz’b" can be determined from the

value of Wp by means of equation (72c).

For practical calculations it is convenlent to use nondimensional
coefficients obtained by dividing all the velocity components by the
limiting velocity V,. The expression a/V, can be obtained from
equation (394).

For small values of a, the values of Vrys Voyr V2 and n/o are

independent of a; and, therefore, the flow for every other value of «
can be obtained from this determination. The calculations can be
graphical or analytical.
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Filgure l.— Cylindrical coordlnates and corresponding veloclty components.
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Figure 2.— The shock surface at o =0 and « # O.
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Figure 3.— The veloclty components in front of and behlnd the shock.
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Figure 4.— The veloclty camponents behind the shock for o # O as a
function of the veloclty components behind the shock for o = O.
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Figure 5.— The analysis of the flow with the characteristics system.
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Figure T.— Scheme of the characteristic net.
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Flgure 9.— The hodograph diagram.
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Figure 10.— Choice of the axls for the hodograph diagram.



